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Stacks of uniform cyclic covers of curves
and their Picard groups

Flavia Poma, Mattia Talpo and Fabio Tonini

ABSTRACT

We study the stack By, 4, of uniform cyclic covers of degree n between smooth curves
of genus h and g and, for h > g, present it as an open substack of a vector bundle over
the universal Jacobian stack of M,. We use this description to compute the integral
Picard group of B g4, showing that it is generated by tautological classes of Bj g -

Introduction

Let k be a field and let h,g,n be nonnegative integers with n > 2. We denote by By, 4, the
stack over k of triples (D — S,C — S, f) where D — S is a smooth, geometrically connected
genus h curve, C' — S is a smooth, geometrically connected genus g curve and f: D — C'is a
uniform cyclic cover of degree n (see Section 4 for a definition of uniform cyclic covers). The aim
of this paper is to describe the structure of By 4, and compute its integral Picard group.

This work was inspired by the results in [AV04] and [BV12]|, where the authors compute the
Picard group of similar moduli problems, namely the stacks of uniform cyclic covers of projective
spaces and of triple covers of curves of genus zero, respectively. However, the methods used here
are different, as we do not use a presentation of B4, as a quotient stack. Another source of
inspiration and, in fact, the starting point of our computation in genus one was the classical
result of Mumford about the Picard group of the stack M ; of elliptic curves (see [Mum63] and
also [FO10]).

This paper was born as a study of double covers of genus one curves, that is, of the stacks
Bh.1,2 (which also explains the use of the letter B, which stands for "bielliptic’). The main obstacle
in generalizing the results for ¢ > 2 was the computation of the Picard group of the universal
Jacobian of M, (see below for a definition), since the methods we used for the same problem in
genus one fail in higher genera. This last problem was solved in [MV14], allowing the generalization
for higher genera.

Let us also remark that the case n = 2 is the most interesting from a “geometric” point of
view, since (in characteristic different from two) all covers of degree two are uniform cyclic and,
therefore, By, 42 is the stack of double covers between smooth curves of genera h and g.
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The Picard group of By, was already computed in [AV04, Theorem 5.1]. Here the authors
introduce moduli stacks of uniform cyclic covers of projective spaces, denoted by Hem(r, n,d)
for 7,n,d > 0. In the one-dimensional case » = 1 we have Hym(1,n,d) = By, where d,n,h
are related by the expression (1) below. In this paper we provide an alternative method for the
computation of Pic By, g , which extends to higher genera.

In [Pagl3| the author introduces moduli stacks of abelian covers of curves, which are re-
lated to our stacks By, 4, in the cyclic, totally ramified case. Let V., be the stack of tuples
(D,C, f,o1,...,0.) where (C,01,...,0.) is an r-pointed curve of genus g and f: D — C' is a
uniform cyclic cover of degree n whose ramification locus is the union of the sections o1, ..., o,.
By forgetting the sections we obtain a functor V, n4n — B gn, Where d, g, h,n are related by
the expression (1) below, which is an Spg-torsor. In [Pagl3, Theorem 3| is proved that Y, ndn.
which is denoted by M ,q(B(Z/nZ),(1),...,(1)), has trivial rational Picard group for nd > 0,
which also implies the vanishing of the rational Picard group of By, 1 ,. In this paper we recover
this last result by explicitly describing the integral Picard group of By, 1 ,,, but we cannot directly
deduce the result in [Pagl3, Theorem 3].

The main result of this paper is the following.

THEOREM A. Let h, g,n be nonnegative integers with n > 2 and set

h+n(l—g) —1 B n(n —1)
Y p— ,sothath—1+n(g—l)+Td. (1)

The stack By, 4., is not empty if and only if d € N. Assume d € N. The stack By, 4, is algebraic
and of finite type over k and, if nd > 2g — 2 or char k { n, the forgetful functor By, g, — M, is
smooth and surjective.

d=2

Let w: C — Bj,g,n be the universal genus g curve, let f: D — C be the universal uniform
cyclic cover of degree n and let L be the dual of the degree one part of the u,-equivariant sheaf
f«Op. The sheaf L is invertible of degree d over C and we have the following.

(i) If g =0, we have

Pic B Z/2n(nd — 1)Z  generated by m.(L ® wg/Q) if d is even,
ic n _
MON TN Zin(nd — )2 generated by det m (£ ® W V/?) if d is odd.

(ii) If g =1, then PicBy, 1, is generated by m.w, and det L with relations
(mewr)? and det m, L ifh=1, n=2, chark {6,
(mews)® and (m,L£)% @ (mywy) 2 ifh=n=2, chark # 2,
(mawr)'? and (det 7r*£)2"2 @ (Tawr)™@n+d=20) it nd > 2, chark { nd.

As an abstract group, we have

YARY/ ifh=1, n=2, chark {3,

Z)3Z % L)2L x Z)2Z  ifh=n=2,

ZJ3L X LJAL x Z)20°T  if nd > 2, "2 s even char k f nd,

7./37. x 7.)27 x Z./4n?7  if nd > 2, w is odd, chark tnd.

PicBp 1.0 ~

(iii) Assume that k is algebraically closed of characteristic zero and nd > 2g — 2 and g > 4, or
nd > 2g —1 and g > 3, or nd > 2g and g > 2. Then PicBy, 4, is generated by det mywy,
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dr(L) and det 7, (L ® wy) (see Remark 2.4 for a definition of d.(—)) with the only relation
(det mowr) 2" @ dp (£)" D @ (det 7y (L @ wy)) D
except for the case g = 2, for which we need to add the relation (det m.wy
As an abstract group, we have
Z]2nZ x ZJ10Z x Z  if g = 2 and n is odd,
ZInZ x ZJ10Z x Z  if g =2 and n is even,
o 7207 x 7.2 if g > 2 and n is odd,
Z.)nZ x 7.2 if g > 2 and n is even.

)10‘

Pic Bh

When h =n(g — 1) + 1 (in particular g > 1), that is d = 0, uniform cyclic covers of degree n
become py,-torsors. This case is not covered by the theorem above, except for h = g = 1 and
n = 2, where Pic By 12 is computed by an ad hoc variation of the methods used in higher genera
and degrees. When d > 0, uniform cyclic covers are never étale and the stacks By 4, share a
common description that we are now going to explain.

Fix g > 0, d,n > 0 and assume chark {n or g = 0 and, if g = 1, chark { d. Set Uy 4, for the
stack of triples (C' — S, Q,s) where C is a smooth, geometrically connected curve of genus g
and Q is a degree d invertible sheaf with a section s € Q™ that is not identically zero on any of
the geometric fibers of C' — 5. The forgetful map Uy 4, —> M, defines the (universal) genus g
curve m: C — Ug 4, together with an invertible sheaf £ of degree d on C and a section t € L.
The zero locus Hg 4, of t in C is a degree nd cover of Uy 4, and By, 4 ,, where d, h, g, n are related
by the expression (1) above, can be identified with the étale locus of Hg gn — U g,n inside Uy g p
(see Proposition 4.4). Since Uy 4, is smooth and algebraic, the problem of computing Pic By 4.5,
splits in two parts: compute Picly 4, and describe the complement of By, 4, in Uy g -

Denote by Jacq 4 the stack of pairs (C — S, Q) where C is a smooth, geometrically connected
genus g curve and Q is a degree d invertible sheaf on C'. This is the so-called universal Jacobian
of degree d on M, . Assume nd > 2g — 2. The forgetful functor Uy 4,, — Jacq, makes Uy g,
into the complement of the zero section of a vector bundle of rank nd + 1 — g over Jacyg (this
description is no longer true in general when nd < 2g—2 and this is why Theorem A does not cover
this case). When n > 2 and since nd + 1 — g > 2, we can conclude that Picly 4, ~ Pic Jacq,.
When g > 2, the group Pic Jacq4 has been computed in [MV14]. If g = 0, then Pic Jacqo ~ Z
(see Proposition 2.6). The case g = 1 is harder than the case g = 0 and our treatment differs from
the methods used in [MV14] for g > 2. The result is that, if g = 1, then Pic Jacq1 ~ Z/12 x Z
(see Theorem 2.9) and it has been obtained by proving that the functor Jacgy; — M1 that
maps (E, Q) to (@%, [OF]) is a trivial gerbe, that is, Jacg1 ~ B, ; Gg over My 1, where Gy is
a smooth affine group over M 1, and by computing the group of characters of G4. The geometric
fibers of G4 — M 1 are particular cases of Theta groups, first defined by Mumford in his paper
[Mum66]| (see Proposition 2.16).

The last part in the computation of Pic By, 4 5, is the description of Uy 4., — Bp, g,n- Topologically
this closed substack coincides with the discriminant locus Zg4, of the cover Hg g, — Udgn-
By standard theory of covers, the locus Z;,, can be described as the zero locus of a section
(the discriminant section) of an invertible sheaf of Ug 4,,. The key point for the computation of
Pic By, g is that Zg 4, is reduced and, if nd > 2g or nd > 29 — 1 and g > 3 or nd > 29 — 2
and g > 4, irreducible (see Theorem 3.2). In the special case ¢ = 1, h = n = 2 (so that
d = 1 and nd = 2g), ad hoc methods show that 29 is a disjoint union of two irreducible
components, allowing the computation of PicBg ;2 (see Theorem 3.2). It is not clear whether
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Z4,g,n s irreducible for the remaining values of h, g,n. The geometry of the loci Z4 4, is studied
by reducing to the case n = 1, showing that Uy 41 ~ Hilbfwg M, (see the section Notation) and

that Hgg1 — Hilbjl\/lg M, is the universal cover.

We remark that Theorem A is obtained by expressing Pic By, 4, as quotient of Pic Jacy 4 by
a given relation and this description holds more generally than in the hypothesis of Theorem A
(see Proposition 4.6 for a precise statement). For instance, if g > 2 and char &k { n the knowledge
of the integral or rational Picard group of Jacg , implies the knowledge of the integral or rational
Picard group of By, 4, respectively. Unfortunately, if g > 2, both the integral and rational Picard
groups of Jacy 4 are known only in characteristic zero, although it seems reasonable to expect the
same description for all but finitely many characteristics. See [MV14, Remark 1.4] for a discussion
on the subject.

The paper is organized as follows. In Section 1 we collect useful remarks and lemmas, while in
Section 2 we study the Picard group of the universal Jacobian Jacg 4 over M, for g =0and g =1
and explain the results for g > 2 obtained in [MV14]. In Section 3 we introduce the canonical
covers Hy gn — Uy gn and describe their discriminant loci, while in Section 4 we introduce the
stacks By, 4, and compute their Picard groups.

Notation

Given a base scheme S, by the words “scheme” or “stack” we always mean scheme or stack
defined over this base scheme. Moreover, by stacks we always mean a category fibered in groupoids
which is a stack for the fppf (faithfully flat of finite presentation) topology. Let S be a stack.

A geometric point of § is a map Speck — S, where k is an algebraically closed field.

Given a sheaf of groups G: (Sch/S)°? — (grps), we denote by GV = Homgs(G,G,,) the
group of characters of G over S, that is, group homomorphisms G — Gy,.

By a cover we mean an affine map X N S such that f,Oy is locally free of finite rank.

Alternatively, a cover is a finite, flat and finitely presented map X 1. S The degree of f is the
rank of f.Ox. The discriminant section s¢ € det(f,Ox)~2 of f is the determinant of the map

f*OX — f*OXV7 T — trf*OX(x : _))

where tr denotes the trace map. The discriminant locus of f is the zero locus in § of sy. The
discriminant section is stable under base change and the complement of the discriminant locus
of f is the étale locus of f in S.

A genus g curve over § is a representable (by algebraic spaces), proper and smooth map
C — S of stacks whose geometric fibers are connected genus g curves. Let m: C — S be a
genus g curve. We say that an invertible sheaf £ on C has degree d € Z if the pull-back of £ on
every geometric fiber of m: C — & has degree d. We denote by w; the relative dualizing sheaf,
which is an invertible sheaf on C of degree 2g — 2.

We denote by M, the stack of genus g curves and by M, 1 the stack of genus g curves with
a section. The forgetful functor M, — M, is a genus g curve, called the universal genus g
curve of M. Given a map § — M, the universal genus g curve of S is the base change
S X My Mg’1 — S.

Let & be another stack and let f: X — & be a representable map. We denote by Hilb%, /S (or
simply Hilb%} whenever S is clear from the context) the stack over S whose objects over S — S
are closed subschemes Z C X xs S such that the projection Z — S is a degree n cover. When
f: & — S is a projective map of schemes, Hilb%, /s is the usual Hilbert scheme of points.

94



STACKS OF UNIFORM CYCLIC COVERS OF CURVES AND THEIR PICARD GROUPS

We denote by Picy /S (or simply Pic, whenever S is clear from the context) the stack over S
which is the fppf sheafification of the functor (Sch/S)°? — (sets) that maps S — S to the set
Pic(X x5 S). If f: X — S is a curve, we also denote by @dx/s (or simply Pic%) the substack
of Picy /S of classes that are locally given by invertible sheaves having degree d on the geometric
fibers of f. Given n € Z we will denote by [n]: Picy,s — Picy s (or [n]: @g(/s — @%‘/3
if X is a curve over §) the map induced by the multiplication by n.

The formation of Hilb% /s> Picy /s and @g( /s commute with arbitrary base change of the

base S. In particular, if ¥ — § is a curve, the stacks HilbdX /s and @C}( /s for d € Z are smooth
over S.

If X is an algebraic stack, we will denote by |X'| the topological space associated with X.

Almost every stack X that we will introduce has a given map to My, for some given g, and
therefore has a given genus g curve over it, that, as remarked above, we will call the universal curve
over (or of) X. With abuse of notation we will usually denote the curves by the same symbol C
for the total space and 7 for the structure map, that is, 7: C — X, but with the convention that
this notation is fixed and remains coherent inside the statement of a lemma, proposition, theorem

.. and its proof. The use of different symbols for such curves seemed to us not practical, while
the use of subscripts would have encumbered the notation too much. Moreover, this notation
is supported by the idea that genus g curves can be seen as restriction of the universal curve
over M. Indeed, if 7: C — M, is the universal curve and ¢: X — M, is a map, C can be
seen as the functor F': (Sch/M)°® — (sets) which maps a genus g curve C' over a scheme S
to the set of sections C(S), while ¢ corresponds to a map Sch/X — Sch/M,. The universal
curve C X p, X —> X of X' then corresponds to the restriction of the functor F' along the map
Sch/X — Sch/M,.

1. Preliminaries

In this section we collect some general results and remarks that will be useful in the next
sections. These results are well known, but for some of them we have decided to include a proof
for completeness and because of the lack of exhaustive references. In this section we consider
Spec Z as the base scheme.

PROPOSITION 1.1. Let f: X — Y be a locally finitely presented map of algebraic stacks and
let a: F —> H be a map of finitely presented quasi-coherent sheaves on X. If H is flat over ),
then « is injective on the geometric fibers of f if and only if « is injective and Coker v is flat
over ). In this case a remains injective after any base change )’ — ) from an algebraic stack.

Proof. 1t is easy to see that taking atlases of ) and X, we can reduce the problem to the case of
schemes, where it follows from [Gro66, Proposition 11.3.7]. O

REMARK 1.2. Let ) be an algebraic stack and let G be a sheaf of groups over ). Then we have
a natural isomorphism

PicByG ~ PicY @ Hom(G, G,,) .
Indeed, by descent, an invertible sheaf over By G is given by a pair (£, p) where £ is an invertible

sheaf over ) and p € Hom(G, G,,), which defines an action of G on L given by p: G — G, ~
Aut(L).

In some proofs we will use dimension counting for algebraic stacks. We recall here some

95



FLAVIA POMA, MATTIA TALPO AND FABIO TONINI

properties which are well known for schemes. We refer to [MBL99, Chapter 11| for definitions
and basics about dimension theory for stacks.

REMARK 1.3. Let f: X — Y be a locally of finite type map of algebraic stacks. Let £ € |X|. If
n: Speck — Y, where k is a field, maps to f(§) and = € |X xy k| maps to £ via the projection,
then the number
dimg f = dim, (X xy k) € Z

does not depend on 7 and z. Indeed, by standard arguments about fiber products one can reduce
to the case Y = Spec k and show that if L/k is a field extension and £’ € |X X L| maps to § € |X|
then dimg/ (X xj L) = dimg X'. Using the definition of dimension for stacks one can assume that X’
is a scheme. In this case the result is standard (see for instance [SP14, Tag 02FW]).

DEFINITION 1.4. Given n € Z, a locally of finite type map f: X — Y of algebraic stacks has
(pure) relative dimension n if all (the irreducible components of all) the fibers have dimension n.

REMARK 1.5. If X is a quasi-compact algebraic stack, there exist n € N and an atlas X — X
of pure relative dimension n, where X is a quasi-compact scheme. Indeed, if P: X’ — X is an
atlas from a quasi-compact scheme X', by [MBL99, Proposition 11.10] we have a decomposition
X' = | |}_y X, such that, if 2 € X, r = dim, P(= dim, Px, ). Taking into account [MBL99,
Corollary 11.11] the map Q: X = ||, AT — X satisfies dim, @ = n for all z € X that is,
it has pure relative dimension n.

PROPOSITION 1.6. Let f: X — ) be a flat and locally of finite type map of locally noetherian
algebraic stacks. Then

dime X = dimg f + dimy ) Y for all § € |X]. (2)
In particular, if f has relative dimension r € Z, then
dimX =dimY +r.

Moreover, if Y is locally of finite type over a field or Z, f has pure relative dimension r € 7Z
and )’ is an irreducible component of Y, then all irreducible components of f~()’) dominate )’
and have dimension dim )’ + r.

Proof. We first prove (2) when X and ) are schemes. By [Gro66, Corollary 14.2.6] and since
fibers have the subspace topology, one may assume that f is surjective, of relative dimen-
sion n € N and translate (2) in dimX = dim)Y + n. By [Gro66, Theorem 14.2.1] we have
dim(Ox ;) = dim(Op-1(¢(z)).) +dim(Oy f(,y) for all x € X. Since for all y € Y we have
max,e r-1(,) {dAim(Op-1(y) »)} = n, we get the desired expression.

When f is a smooth atlas (2) follows from definition of dim ) Y. We show that

(2) for schemes = (2) for algebraic spaces = (2) for stacks.

Both implications follows from the same proof. One considers smooth atlases X — X and
Y — Y. Choose points y € Y over f(£) and x € (X xy k(y)) mapping to . Writing a diagram
of all possible fiber products, the proof now consists in applying (2) several times on various
projections of this diagram.

If f has relative dimension 7, the expression dim X = dim ) + r follows from (2) and the fact
that for all n € [J| we have maxgc p-1(;{dim¢ f} = r. We now consider the last claim in the
statement. We may assume that ) is irreducible. Let X’ be an irreducible component of X with
generic point £. Notice that X’ contains an open substack of X. In particular, dimg X' = dimg X”.
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Moreover, since f is open, f(§) = 1 is the generic point of Y. By (2) we have dim¢ X’ = dim,, Y+
Thus it suffices to show that if Z is an irreducible stack locally of finite type over a field or Z
and ( is its generic point, then dim Z = dim Z. First, we may assume that Z is quasi-compact
by taking an open substack of Z of the same dimension. Then, by Remark 1.5 there exists an
atlas P: Z — Z of pure relative dimension r, so that dim Z = dim Z + r. On the other hand,
we have seen that if z is a generic point of Z, then dim; Z = dim¢ Z +r. This tells us that dim, Z
does not depend on the choice of the generic point and therefore, by [Gro66, Corollary 10.6.4,
Example 10.7.1], dim, Z = dimg = dim Z, which implies dim Z = dim¢ Z. O

COROLLARY 1.7. Let X be an irreducible stack of finite type over a field and let Z be the zero
locus of a section of an invertible sheaf on X. If ) # Z C X then all irreducible components of Z
have dimension dim X — 1.

Proof. Let P: X — X be an atlas of pure relative dimension r (see Remark 1.5) and let 2Z’, Z’
and X' be irreducible components of Z, P~!(2’) and X such that Z’ C X’. Notice that Z’ C X',
because otherwise P(Z’) contains the generic point of X'. Since Z’ is an irreducible component of
a section of an invertible sheaf on X’, we have dim Z’ = dim X’ — 1. On the other hand, since P
has pure relative dimension r, we have dim Z’ = dim Z’ + r and dim X’ = dim X’ + r. O

COROLLARY 1.8. Let f: X — ) be a map of stacks locally of finite type over a field and assume
that X is a Deligne-Mumford stack. Then dim f(X) < dim X', where f(X) is the reduced closed
substack of Y whose topological space is f(]X]).

Proof. When X and Y are schemes, the result is standard. We show how to reduce to this case.
We may assume that f is dominant, so that f(X) = ). By taking an atlas of ) of pure relative
dimension (see Remark 1.5), we may assume that ) is a scheme. Moreover, we may replace X by
a scheme because étale atlases do not change dimension. O

PROPOSITION 1.9. Let X be a smooth and integral algebraic stack over a field.

— Ifh: YV — X is a vector bundle of finite rank, then h*: Pic X — PicV is an isomorphism.

— If Z is a closed substack of X of codimension greater than two, then the restriction map
Pic X — Pic(X — Z) is an isomorphism.

— Given L1, s1,...,L;, s, where L; is an invertible sheaf on X with a nonzero global section s;
whose zero locus Z(s;) is integral, the restriction map induces an isomorphism

PicX/(L1,...,Ly) ~ Pic(X — (Z(s1)U---UZ(S,y))) .

Proof. Let o: X — V be the zero section. We must prove that PicV 7 Pic X is injective.
Let Q be an invertible sheaf on V in the kernel and define the sheaf Fg on the small smooth-étale
site of X by

Fo(U) = Isop-11)(Qn—1v), On-11)) -

The map o induces a map Fg — Isoy(0*Q,Ox) and it suffices to prove that it is an isomor-
phism. This is a local question, so that we may assume that X = Spec D is affine and that V is
trivial. By standard intersection theory for schemes, Q is trivial and therefore the previous map
on the global sections is just (D[x,...,xy])* >~ D*.

Let U be an open substack of X. If Q is an invertible sheaf on ¢, then by [MBL99, Corollary
15.5] there exists a coherent sheaf 7 on X such that Fj; ~ Q. Then the sheaf £ = FYVis a
reflexive sheaf of rank one and thus invertible and Ly, ~ Q. This shows that Pic X — PiclU is
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surjective. We now use the description of divisors given in [AV04, Proof of Lemma 5.2]. Let £ be
an invertible sheaf on X’ such that L, >~ Oy. It follows that there is a divisor D on X such that
L ~ Ox(D) and the support of D is in X — U. In particular, if X — U has codimension greater
than two, then D = 0. For the last point the sheaves £; ~ Ox(Z(s;)) restrict to Oy on U and
L~ L7 @ L' where m; is the multiplicity of D in Z(s;) (computed on an atlas). O

LEMMA 1.10. Let m: C — S be a genus g curve over an algebraic stack and let F be a finitely
presented quasi-coherent sheaf on C, flat over S. Then R/ w,F is locally free and satisfies base
change for all j € N in the following cases.

(i) The sheaf F is invertible of degree zero and such that [F] = 0 in Pic) /s- In this case, m. F
is an invertible sheaf and the canonical map

T JF — F

is an isomorphism.
(i) We have F = wy. The sheaf mw,w, has rank g and R' mowr ~ Og. Moreover, if g = 1, the
map T*Tewy; ™~ Wy Is an isomorphism.
(iii) The sheaf F is invertible of degree d > 2g—2 or d < 0. In this case, rk m, F = max{d+1—g,0}
and tk R m, F = max{—d — 1+ ¢,0}.
(iv) The sheaf F is supported on a closed substack of C which is quasi-finite over S. In this case,
R!' 1. F = 0.
In all of the cases above but the last one, we have an isomorphism
R F o~ mo(FY @ wy)” .
Proof. By [Kle80, II, Definition 10 and Theorem 21| there is a canonical map
7 Hom(F, wy) — (R'm.F)”
which is an isomorphism if R! 1, F satisfies base change. In this case. if 7 and R! 7. F are locally
free, we get the last formula in the statement by dualizing the isomorphism above.

All the other claims follow by standard semicontinuity theorems and Riemann—Roch. O

LEMMA 1.11. Let m: C — S be a genus g curve over an algebraic stack and let Q be a degree
d invertible sheaf on C with a section s € Q which is nonzero on the geometric fibers. Then the
zero locus Z of s in C is a degree d cover of S. When d = 1 this defines a section 7: S — C with
an isomorphism O¢(71) ~ Q sending 1 to s. If in addition g = 1, then the map Og s 1,.Q is an
isomorphism.

Proof. By Proposition 1.1 the sequence
0—>Q71—>Oc—>02—>0

is universally exact over § and Z is flat over S. Moreover, Z — S is proper, finitely presented
and, by looking at the geometric fibers, quasi-finite. By |Gro66, Theorem 8.11.1] we can conclude
that Z — & is a cover. By Riemann—Roch it has degree d.

Assume d = 1. The claim about the section 7 follows from standard arguments. The last claim
follows from the fact that 7, Q is invertible and satisfies base change by Lemma 1.10 and s € 7, Q
is nowhere vanishing by hypothesis. O

REMARK 1.12. Let m: C — & be a genus g curve over an algebraic stack and n € Z. The map
[n]: Pic; /s — Pics Is a cover of degree n29, and it is étale if n € OF. Indeed, since the problem
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is local on &, one may assume that S is a noetherian scheme and that C — S has a section.
This allows us to reduce the problem to the case r = 0. Since @2 /s S is flat and proper
of relative dimension g, by the local flatness criterion [Gro66, Theorem 11.3.10] we may assume
that S is the spectrum of an algebraically closed field. In this case, the result follows from [Mil08,
Proposition 7.1 and Theorem 7.2|.

In particular, all invertible sheaves on C of degree divisible by n are locally for the fppf topology
(on S) an nth power of an invertible sheaf on C. Moreover, (Pich /s)[n] is a finite, flat and finitely

presented group scheme over S of degree n?9, and it is étale if n € Os.

2. The universal jacobian of degree d over M, and its Picard group

In this section we assume to work over a field of characteristic p > 0 and we fix a nonnegative
integer g (the genus) and an integer d (the degree).

DEFINITION 2.1. We denote by Jacq, the stack of pairs (C, Q) where C is a curve of genus g
and Q is an invertible sheaf over C of degree d. The stack Jac, 4 is called the universal Jacobian
stack of degree d over M,.

The aim of this section is to describe the Picard group of Jacqy. When g > 2 this has already
been done in [MV14]. We will deal with the remaining cases, that is, genus zero and one.

REMARK 2.2. The forgetful functor Jacg, — My is the composition of a Gy,-gerbe Jacqy —
@jl\/lg,l /M, and ‘Fhe representabl.e and smooth functor @ﬁwg’l M, T M. In particular, Jacg 4
is a smooth and integral algebraic stack.

DEFINITION 2.3. Let C — Jacqg be the universal curve over Jacy 4. By construction, there
exists an invertible sheaf £ over C such that
q
c——C
* ~Y
Lo rh=e
T

— Jacyy

for all schemes T'. We call the sheaf £ the universal invertible sheaf over C. Given a stack ) over
Jacg 4 the universal invertible sheaf over the universal curve C X 74¢ g Y of Y is the pull-back
of £ via the map C X 74¢,, Y — C.

We now describe the result in [MV14] about Pic Jacg, when g > 2.

REMARK 2.4. Let m: C —> S be a genus g curve. Given an invertible sheaf 7 on C one can
define an invertible sheaf d(7) on S, called the determinant of cohomology of 7. When 7, T
and R 7, T are locally free, one can simply set d(7) ~ det 7,7 @ (det R! 7, 7)~1. We refer to
[MV14] for the general definition. In this paper we just use the fact that the formation of d.(7T)
commutes with arbitrary base changes.

Notice that from Lemma 1.10 it follows that d(w;) ~ det m.w, and that, if 7 is an invertible
sheaf on C of positive degree, then d (T ® wy) ~ det T (T ® wy).

THEOREM 2.5. [MV14] Assume that the ground field is algebraically closed of characteristic 0
and that g > 2 and d > 0. Let m: C — Jacg 4 be the universal curve and let £ be the universal
invertible sheaf over C. Then Pic Jacy 4 is freely generated by det mywy, d-(L) and det m, (L ®wy),
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except when g = 2, in which case there is a single relation given by (det mywy)'°. Moreover, for
all n,k > 1, we have an isomorphism

det W*(ﬁn ® wf‘r) ~ (det 7.‘.*WW)6k276kfn2+1 ® dﬂ(‘c)fnk+n(n+1)/2 ® (det 71'*([, ® wﬂ))nk+n(nfl)/2 )

Proof. Taking into account Remark 2.4, everything follows from [MV14, Theorem A and 5.2,
Notation 1.5, Remark 5.3]. O

2.1 Genus zero case

In this subsection we consider g = 0, while d is any integer. We will prove the following.

PROPOSITION 2.6. Let m: P — Jacgo be the universal curve and let L be the universal invert-
ible sheaf over P. If d is even, then Pic Jacqy is freely generated by Ly = 7. (L ® wfﬁ”) and we

have an isomorphism

det m (L7 @ wh) ~ Lomatnd=2R0 L0 g alln, k€ Z.

If d is odd, then Pic Jacqyq is freely generated by Ly = det m (L ® wT(rd_l)/z) and we have an

isomorphism
det m, (L™ @ wk) ~ L’gmax{nd_%ﬂ’o}ﬂ for alln,k € Z.
We will need the following lemma, whose proof is standard and thus omitted.
LEMMA 2.7. The group (GLsy)" is freely generated by det: GLy — G,,, while (PGL3)" =0

REMARK 2.8. Let m: P — S be a curve of genus zero over an algebraic stack and let Q be an
invertible sheaf on P. If Q has degree zero, by Lemma 1.10 it follows that 7,Q is an invertible
sheaf, it satisfies base change and the map 7*m,Q — @ is an isomorphism because it is so on
the geometric fibers.

If Q has degree one, by Lemma 1.10 it follows that 7, Q is a rank two locally free sheaf, it
satisfies base change and the map 7*7m,Q — @ is surjective because it is so on the geometric
fibers. In particular, we obtain an isomorphism P — P(7,Q): the pull-back of Op(,,0)(1) is Q
and therefore we get the Euler sequence

00— w9 — 7'M, Q — Q—0.

Proof of Proposition 2.6. Since My ~ BPGLy, by Remark 1.2 and Lemma 2.7 we obtain
Pic My = 0. In particular, det 7, (w¥) is trivial for all k € Z in Pic Jacgo.
d/

Assume that d is even. Tensoring by wy
By Remark 2.8 we see that the functors Jacoo — B, Gy, mapping (P 408, Q) to (P,q«Q)
and By, G, — Jacop mapping (P 409, T) to (P,q*T) are quasi-inverses of each other.
Moreover, by Remark 1.2 we have Pic By, Gy, >~ Pic Mo @ Z ~ Z, generated by the invertible
sheaf given by the rule (P,7) — 7. The pull-back of this sheaf via Jacqo ~ Jacoo =~ Bumy Gm
is isomorphic to Ly, which therefore freely generates Pic Jacqo. By Remark 2.8 we have £ ~

2 . . .
yields an isomorphism Jacgg — Jacp,o over My.

Loy ® wr d/2 and, using the projection formula,
k—nd/2

det 7, (L7 @ wk) ~ det (L @ m,(wE™Y2)) ~ £ ke (wn ).

Finally, by Lemma 1.10 we see that rk (wﬁ_ndﬂ) = max{nd — 2k + 1,0}.
Assume now that d is odd. Tensoring by w7(rd—1)/27 we get an isomorphism Jacqg — Jacip.

By Remark 2.8 we see that the functors Jac; 9o — B GLg mapping (P 4 s, Q) to ¢+ Q and
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BGLy — Jaci1o mapping & to (P(£), Op(gy(1)) are quasi-inverses of each other. Moreover, by

Remark 1.2 we have Pic B GLy ~ Z generated by the invertible sheaf given by the rule £ — det £.

The pull-back of this sheaf via Jacqo ~ Jaci,9 ~ B GL3 is isomorphic to Lg. Set T = /J®w7(rd_1)/2,

so that Lo = det 7, 7. Applying the determinant to the Euler sequence in Remark 2.8 associated
with 7 we get an isomorphism

Wy ~ T LR T 2.
Writing £ ® wk in terms of 7 and Lo and applying the projection formula, we obtain

det W*(ﬁn ® wfr) ~ det(ﬁ’g_n(d_l)/Q ® T, (Tnd_2k>) ~ E(()k’—n(d—l)/z) rk . (Td—2k) ® det ﬂ_*(Tnd—2kz) .

By Lemma 1.10 we have rkm,(779"2%) = max{nd — 2k + 1,0}. Thus it suffices to prove the

expression det 7, (T9) ~ Eg(q+1)/ % for q = 0. Considering the Fuler sequence in Remark 2.8
associated with 7, replacing w, by 7*Lo ® T2 and tensoring by 79, we get an exact sequence

00— LTI > rrnToT?— T 0.

The push-forward =, of the sequence above for ¢ > 0 is exact because R! 7. (m*Lo ® qul) =0
thanks to Lemma 1.10. Thus applying m,, the determinant, the projection formula and using that
tkm (7T") =7+ 1 for r > —1, we get an isomorphism

det m (T4 ~ Ly ® (det 7(T))? @ (det m (T971)) L.
It is now easy to check by induction that det m,(79) ~ Eg(q+l)/2. O

2.2 Genus one case
In this subsection we consider g = 1 and d > 0. We will prove the following theorem.
THEOREM 2.9. Let m: & — Jacq, be the universal curve over Jacq, let L be the universal

invertible sheaf over £ and assume p { d. Then Pic Jacg is generated by m.w, and det 7, L with
the only relation (m.wy)'2. Moreover, we have an isomorphism

det 7, (L™ @ w¥) ~ (det W*E)”2 ® (M) PEHM=DAN=20=2)/2 for. n > 0,k € Z.
The starting point is the well-known Theorem of Mumford, later generalized by Fulton and
Olsson. (See [Mum63| and [FO10])
THEOREM 2.10 (Mumford, Fulton, Olsson). The Picard group of M is cyclic of order 12; it is

generated by m.wy, where w: & — M1 is the universal curve.

We will proceed by showing that Jacy,1 is isomorphic to By, ; Gg, for a certain group scheme
Gy over My 1. In particular, we will conclude that Pic Jacq; ~ Pic M1 ® Hom(Gy,G,,) and
we will conclude the section by computing the group of characters Hom(Gy, Gy,).

LEMMA 2.11. Let m: £ — S be a genus one curve over an algebraic stack. Then the functor

Q .
E mé /S

(0:T — ExsT) - [Ogxs7(0)]

is an isomorphism. If 0: § — &£ is a section, then also the functor

£ Picy
(5: T—F X8 T) — [OSXST((S — 0 Xs T)]
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is an isomorphism that sends o to [Og]

Proof. The last part of the statement follows from the first one. We start by showing that €2 is an
fppf epimorphism. Let x € E};(T), where T' is an S-scheme. We may replace T' by S and assume
the existence of an invertible sheaf £ of degree one over £ such that x = [£]. By Lemma 1.10 the
sheaf @ = m, L is invertible and we may assume that it is trivial. Since 7, L satisfies base change,
the section s of £ corresponding to 1 € 7, L is always nonzero on the geometric fibers of . Thus,
by Lemma 1.11, we get a section 7: S — £ with an isomorphism Og(7) ~ L, so that Q(7) = x.

We now prove that € is injective over an S-scheme T'. Again, we may replace T' by S, so that,
in particular, S is a scheme. Let 6,0’ € £(S) such that [Og(d')] = [Og()]. By Lemma 1.10 we
have an isomorphism

Og(6) = Og(9) @ 7*Q

for some invertible sheaf Q over S. Since m,Og(0) and 7. Og(d') are freely generated by the
respective sections 1 by Lemma 1.11, applying 7. we get an element x € Q such that a(1) =
1 ® 7*z and that freely generates Q. Thus we obtain an isomorphism Og(d) — Og(d") mapping
1 to 1 and therefore the equality § = ¢’ O

PROPOSITION 2.12. Let £ — S be a genus one curve over an algebraic stack with a section o.
Then we have isomorphisms

det m,Og (no) ~ 0*Og (o))" V271 for p > 1
and
0*Og(0) ~ (Tywr)”

Moreover, if L is an invertible sheaf over £ of degree greater than zero and T is another section
(possibly equal to o), we have an isomorphism

det . (L ® Og(1)) = det (LR Og(T — 0)) 0" LR 0¥ Og(T) .

Proof. In what follows we will use Lemma 1.10 and, in particular, the isomorphism w; >~ 7*m.wy
without further comments. Notice that the first isomorphism in the statement follows from the
last one with 7 = o, induction and the isomorphism 7,0g(0) ~ Os (see Lemma 1.11).

Consider an invertible sheaf £ on £ of degree greater than or equal to zero and a section 7
of €. Tensoring by £ ® Og(7) the exact sequence on &

0— Og(—0) — Og — 0,05 — 0
and applying 7., we get an exact sequence
0 — T (LRO(T—0)) — (LD O(T)) — 0" (LR Og(1)) — R' 1, (LR Og (1 —0)) — 0.

If £ = Og and 7 = o, we obtain a surjection 0*Og () — R! 1.0¢ ~ (m.w,)" which is therefore
an isomorphism. If £ has degree strictly greater than zero, the last term in the sequence is zero
and taking the determinant we get the last isomorphism. O

PROPOSITION 2.13. The functor

Mi Jacg
(E,0) ——— (E,Og(do))
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is an epimorphism in the fppf topology and is a section of the functor

Jacg M
(E, L) —— (Picy g, [Ox]) .

Proof. The second part of the statement follows from Lemma 2.11. For the first one let (E, L) €
Jacg1. By Remark 1.12 fppf locally we can write £ ~ T< for some degree one invertible sheaf 7~
on E. By Lemma 2.11 E has a section o such that [T] = [Og(0)], which means that 7 and £
are fppf locally isomorphic to Og(o) and Og(do), respectively. O

LEMMA 2.14. Let p: X — )Y be a map of stacks over a scheme S with a section s: Y — X
which is an fppf epimorphism and denote by G the sheaf of groups over ) defined by

G(T -5 V) = Ker(Autx(s(€)) — Auty(ps(€))).

Then the functor F': X — By G which maps n: T — X to the sheaf F(n) over T' given by the
inverse image of the identity section of Auty(p(n)) along the map

Isop(n, sp(n)) == Isor(p(n), ps(p(n))) ~ Auty(p(n))

defines an equivalence of stacks.

Proof. Given £: T — ), denote by ¢, G¢ and s¢: T' — X the base change of X', G and
s: Y — X along &, respectively. Given n: T — X', we show that F(n) is a G-torsor. A direct
check shows that F'(n) coincides with Isox, (1, 8p(y)) and Gg¢ =~ MXE(Sg). Since 1 and s, are
fppf locally isomorphic, it follows that F'(n) is a G (n)-torsor. It is easy to see that the association
17— F(n) defines a functor F': X — By G. Since the base change of F' along any morphism

T — Y is an equivalence by standard results, we obtain that it is globally an equivalence. [

DEFINITION 2.15. We define the group functor G4 over M 1 as the group G obtained as in
Lemma 2.14 with respects to the maps defined in Proposition 2.13.

Let us describe the group G more concretely.
E
PROPOSITION 2.16. An element of G4(S {Ba), M) is a pair (f,\) where f: E — E is a
translation by an element in E[d] and \: Og(c)? — Og(f(c))? is an isomorphism. Moreover,
we have an exact sequence

(f;A) = f(o)
0 Gm Gq Eld] 0
P (id, p)

in the Zariski topology of Sch/M; 1, where &€ — M ; is the universal curve. In particular, Gg
is affine and of finite type over M ; and, if p{d, it is smooth over M ;.

Proof. By definition, an element of Gg4(S @) M 1) is a pair (f,\) where f: E — FE'is an
isomorphism such that f.: Picy ¢ — Picy ¢ is the identity and A: Op(0)? — Op(f(a))?
is an isomorphism. Taking into account Lemma 2.11, the condition f, = id means that, for all
0 € £(T') and S-scheme T, we have

[Op,(f(6) = f(0)] = [Op, (6 — 0)],
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which implies that f: E — E is a translation. The existence of A also implies that f(o) € E[d].
In particular, the sequence in the statement is well defined and, since 7,.G,,, g ~ Gy, g, it is exact
in the first two terms.

It remains to prove that G4 — £[d] is a Zariski epimorphism. This will also imply that G is
locally a product of G, and £[d], proving the last sentence in the statement. Let § € £[d] and let ¢
be the translation by 6, so that ¢(¢) = 6. By Lemma 1.10, the equality [Og(d —0)?] = 0 in @%/S
implies that Op(d — 0)¢ ~ 7*Q, where Q is an invertible sheaf over S. In particular, where Q
is trivial, we get an isomorphism A: Og(c — t(0))? — Op and therefore a pair (¢,\) € Gq
over 6. O

E
The groups obtained from G4 as base change along geometric points Spec k % My are
particular cases of Theta groups, first defined by Mumford in his paper [Mum66]. With notation

from this paper we have Gg x 1, , k = G(Og(dp)).
COROLLARY 2.17. We have an isomorphism Jacq,1 =~ B, , Ga-

By Remark 1.2 the last step in the computation of the Picard group of Jacg is the study of
the group of characters Hom(Gy, G,,). For the remaining part of this subsection we assume p 1 d.

LEMMA 2.18. The map
€d

Gd X Gd
(z,y)

Gm

ﬂiyl‘_ly_l

is bilinear and factors through a map eq: £[d] x E[d] — Gy, where € — M 1 is the universal
curve. Moreover, the map ey induces an isomorphism

€[d] ~ Hom(E[d], Gp,) -

Proof. The map é4 is well defined because £[d] is abelian. Note that G,, C Gy is contained in
the center. In particular, the map ey in the statement is well defined and we have

1 1,-1

éa(ry, z) = xyzy x 2 11

= xéd(y,Z)ZCL‘_ z = éd(CC,Z)éd(y,Z).

Finally, é4(z,y) = éq(y,z)~! and é; and ey are therefore bilinear. Let ¢ be the induced map
E[d] — Hom(&[d], G,,). This is a map between flat and finite group schemes and we can check
that it is an isomorphism on the geometric points. So let E be an elliptic curve over an algebraically
closed field. In this case E[d] ~ Z/dZ x Z./dZ and Hom(E[d], G,,) ~ E[d] as abstract groups. The

result then follows from the fact that ey is nondegenerate thanks to [Mum66, §1, Theorem 1]. [J

PROPOSITION 2.19. Let & — M 1 be the universal curve. Then
£ld]Y = Hom(£[d], G,,) = 0.
In particular, the map G} — Gy, induced by the inclusion G,, — Gy Is injective.

Proof. By Lemma 2.18 we have Hom(&[d], G;,,) ~ £[d]. Therefore we have to prove that there are
no sections My ; — £[d] but the zero one. By contradiction, assume we have a nonzero section
d: My — £&[d]. In particular, by base change, we have a section dg for all elliptic curves E.
Since £[d] is étale and separated over M 1, there are no elliptic curves E such that df is zero.
Moreover, we may assume that d is prime. If d = 2, let k be a field having an irreducible and
separable polynomial g € k[x] of degree 3 and consider the elliptic curve defined by the equation
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y? = g(x). In this case E[2](k) = 0 by [Sil86, Group law algorithm 2.3] because g has no zeros
in k and therefore p = 0, which is a contradiction.

So we may assume that d is an odd prime. Let k be a field having a degree two separable
extension L and an elliptic curve E. We are going to prove that g € E(k) is invariant under the
involution of F, that is, that 05 € E[2](k). This will end the proof because E[d](k) N E[2](k) = 0.

We want to construct a new elliptic curve E' over k with the following construction. Let F'
be a sheaf of sets over a scheme S with an involution i: F' — F', let P — S be a Z/2Z-torsor
and call 0: P — P the induced order two automorphism. We define a new functor by

Fps;: (Sch/S)°? — (sets), Fpg;(T) ={z € F(T x P) | oz =i(x)}.

Since ¢ and o* commute, it is easy to check that F'p/g; is a sheaf and that if S’ — S is any
base change, then Fp/g; X S = Fpysi/s,i- Moreover, if A: T — P x T is a section, it is easy
to check that
FP/S,i(T) — F(T), z— A*z
is a bijection. In particular, for any torsor P we get an isomorphism 7: Fp/g; x P — F' x P
induced by the diagonal section P — P x P. We now claim that if there exist x € Fp,g;(5)
and y € F(S) such that 7(h*x) = h*y, where h: P — S is the structure morphism, then it
follows that i(y) = y. Indeed, by construction 7(h*z) =z, c*h*y = h*y and, since z € Fp/g;(5),
o*r = i(x). In particular, h*i(y) = h*y and by descent i(y) = y.
We apply the previous construction with F' = F, i the involution of £ and P = Spec L. Set
E' = Fp/i;- The sheaf E' is a genus one curve and 0 € E'(k) € E(L). Thus E’ is an elliptic
curve and, by construction, 7: E/ x P — E x P preserves the neutral element; that is, it is an
isomorphism of elliptic curves. Since 0 and dg come from a global section on M ; we should
have 7(dg/«p) = dExp, which implies that i(dg) = g as shown above. O

PROPOSITION 2.20. Consider the map G — Gy, = Z induced by the inclusion G,, — Gj.
The morphism

Pic Jacg1 ~ PicMy1 ® Gy — PicMi1 @ Z ~Z/12Z & Z
sends the invertible sheaf on Jacg; defined by Jacq1 > (E -5 8,L) — detm L™ to the
element (1 — nd(nd + 1)/2,n%d)
Proof. Notice that Bay, , Gy, is isomorphic to the stack X of triples (E -5 S,0,Q) where
(E,0) € My, and Q is an invertible sheaf over S. Consider the functor

Q
X Jacg

(E1 8,0,Q) (B S,0g(do) @ mQ).

We claim that the functor Q: Bry, Gm =~ X — Jacgy ~ Bayy, Gg is naturally equiva-
lent to the map Bi«: Bay; Gy — By, Gg induced by the inclusion G, — Gg4. Given
(E 5 S,0,Q) € X, the associated G,,-torsor is Isog(Q, Og), while ﬁ(@S(Q, Og)) is the
subsheaf of

I50,74c, , (B, Op(do) @ m°Q), (E, Op(do)))

of isomorphism (f, A) such that f,: Pic% — Pic(}{; is the identity by Lemma 2.14. In particular,
there is a Gy,-equivariant map Isog(Q,Og) — Q(Isog(Q, Og)) compatible with base changes
and automorphisms of Q. Recall that 5,(P) = (P x G4)/G,, for a G,,-torsor P and that, if @ is a
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Gy-torsor, G,-equivariant maps P — @ are in one to one correspondence with Gg-equivariant
isomorphism (,(P) — Q. Thus given P, the G,,-equivariant map P — §~2(P) induces an
isomorphism 8,(P) — Q(P) of Gg-torsors and it is easy to check that this yields a natural
isomorphism S, — Q.

We can conclude that the map in the statement can be seen as the pull-back along 2: X —

Jacg1 on the Picard groups. The invertible sheaf defined in the statement is sent to
(E X5 S,0,0) — det m,(Op(ndo) @ 7 Q") ~ (det 7, O (ndo)) @ Q"¢

Since the invertible sheaf (F,o, Q) — Q is the generator of G,, in Pic Bty 1 G, the result
follows from Proposition 2.12. O

PROPOSITION 2.21. The image of the map Gy — G/, ~ Z induced by the inclusion G,, — Gg4
is dZ.

Proof. Call a: G — Gy, ~ Z the map in the statement. By Proposition 2.20 applied to
n = 1, we see that dZ C Ima. Let E be an elliptic curve over an algebraically closed field k.
By Lemma 2.18, it follows that there exist z,y € Gy(k) such that w = e4(z,y) = zyxr 1y~ ! is
a primitive dth root of unity. If ¥: G4 — Gy, is a morphism and we set r = (), we have

1 = 9¢(w) = w", which implies d | r. O

Proof of Theorem 2.9. By Corollary 2.17 we have Jacg;1 =~ Bay, ; Gq and by Remark 1.2 we can
conclude that Pic Jacg1 ~ Pic M1, & Gy. By Propositions 2.19 and 2.21 we have G| = dG,, C
G,,, and by Proposition 2.20 that

T = det m L @ (myw, ) @HD/271
freely generates G. Again by Proposition 2.20 we have
det W*(,Cn) ~ Tn2 ® (ﬂ,*wﬂ_)l—nd(nd—l-l)/Z )

Taking into account that w; ~ 7*m.w,; and using the projection formula, a direct computation
concludes the proof. O

3. Canonical covers and their discriminant loci

In this section we work over a field of characteristic p > 0 and we fix nonnegative integers g
and d and a positive integer n.

DEFINITION 3.1. We denote by Vg4, (respectively Uqq,) the stack of triples (p: C — S, Q, s)
where (p: C — 5, Q) € Jacqy and s is a section of Q™ (respectively a section of Q™ that is not
identically zero on any of the geometric fibers of p: C' — 5).

Let C — Ug,g,n be the universal curve of Uy 4, and let £ be its universal invertible sheaf. By
definition, L™ carries a section; we will call it the marked section of L™.

If d > 0, we denote by Hg g4, the zero locus of the marked section of £". By Lemma 1.11
the map Hggn — Uqgn is a degree nd cover; we will call it the canonical cover of Ugg .
Moreover, the closed immersion Hg 4, — C defines a functor pggn: Uggn — Hilbj(ﬁl[g’1 /M, an
object (C, Q,s) is sent to the zero locus Z(s) C C of s € Q". Finally, we denote by Zg,,, the
discriminant locus of the canonical cover Hq g pn — Uggn of Uy g p-

The aim of this section is to understand the geometry of the stacks Uy 4, and Z4 4 ,,. We will
prove the following.
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THEOREM 3.2. Assume d > 0. Let C —» Ug g n be the universal curve of Uy 4, and let L be the
universal invertible sheaf over C. Then Zg 4, # () if and only if dn # 1 and in this case Zggn 18
flat and surjective over M, and we have:

(i) The stack Z44.y, is the zero locus in Uy g of a section of the invertible sheaf
(det 7. (L" @ wy))? @ (det mowyr) 2.
(i) If ptn or g =0 then Z44,, is geometrically reduced over M and, in particular, reduced.
(iii) The stack Zq 4., is irreducible in the following cases: n = 1; dn > 2g; dn = 2g and g > 3;
dn =2g—1 and g > 4.

(iv) If g =1 and p # 2, then Z1,1,2 Is a disjoint union of two integral substacks of Ui 12, one of
which is the zero locus of a section of the invertible sheaf

det(m.L?) @ (m.L) 2.

We start giving a more precise description of the stacks Uy 4, proving, in particular, that
they are algebraic and explaining the relation with the Hilbert scheme Hilbﬁjitg M,

REMARK 3.3. Assume nd > 2g — 2. In this case, by Lemma 1.10, the stack V;,4, is a vector
bundle of rank nd + 1 — g over Jacq 4 corresponding to the locally free sheaf m, (L"), where
m: C — Jacyg is the universal curve and £ is the universal invertible sheaf over C. Moreover,
Ug,gn is the complement of the zero section of Vg 4.

PROPOSITION 3.4. If d > 0, the functor pgg1: Uzg1 — Hilb‘ngl/Mg is an equivalence. A
quasi-inverse is given by ’

and
Hlleg’l/Mg —— Uy g1
(C,ZCC)—— (C,I3,1)
where Iz is the sheaf of ideals defining Z.

Proof. Given an object Z C C € Hilbd /My (S), we have to prove that Zz is invertible over C.

Since Hilb% Mo/ M, is smooth over M, we may assume that S and therefore C' are smooth over
the base field. By the flatness of Z, Iz is invertible on the fibers of C' — S and therefore
dimy(y Zz ® k(p) = 1 for all p € C, which implies that I is invertible over C'. The discussion
above shows that the functor in the statement is well defined. The fact that the functors are
quasi-inverses of each other is standard. ]

PropPOSITION 3.5. If (C,Q,s) € Uy gn, then s: Oc — Q" is an isomorphism. Moreover, the
functor Uy g, — (@9\49,1//\49)[”] is a i,-gerbe.

Proof. The first claim follows from the fact that a nonzero section of a degree zero invertible
sheaf on a proper curve over an algebraically closed field always generates it. Denote by F' the
functor in the statement. Given &: T — (@9\4%1 / Mg)[n], denote by Y — T the base change
of F' along . In order to prove that ) is a uy,-gerbe, we may assume that £ is given by a curve
p: C — T and the class of some invertible sheaf £ on C. Since n[£] = 0 in Pic%, the sheaf
p« (L") is invertible by Lemma 1.10 and we may assume that it is trivial. An object of Y(T) is a
pair (Q, s) where Q is an invertible sheaf over C, s: Oc — Q™ is an isomorphism and [Q] = [£].
Those data define an invertible sheaf 7 = p,(£L® Q_l) with an isomorphism Op — 7", Since T’
is arbitrary, we get a functor Y — B u,, which is easily seen to be an equivalence. O
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PROPOSITION 3.6. The map

Jacgg 2, Jacgn,g
(Cv Q) I (Cv Qn)

is the composition of a u,-gerbe followed by a surjective cover. If p4n or g = 0, it is smooth.

Proof. Consider the diagram

Q

Jaca, T
h\} F jacdn,g
Pi d [n] Pi dn
71CM971/M9 71CM9,1/M9

where the square diagram is Cartesian. By Remark 1.12 the map [n] and therefore the map
F — Jacg,g are covers of degree n29; they are étale if p ¥ n or g = 0. It remains to prove
that h: Jacqy — F is a pp-gerbe. An object of F over a scheme S is a triple (C, x, Q) where
(C, Q) € Jacany(S), x € Pick(S) satisfying [n]x = [Q]. The map & sends (C,T) to (C, [T],T™).
Let Y — T be the base change of h along a map T' — F given by the data (¢: C — T, x, Q).
The objects in Y(T') are pairs (7, A) where T is a degree d invertible sheaf on C' with x = [T]
and \: 7" — Q is an isomorphism. We may assume x = [To] and, since [n]xy = [Q] means
[75'] = [Q] so that 7" ~ Q ® ¢*R for some invertible sheaf R on T by Lemma 1.10, we may
also assume Y(T) # (). In this case Y(T) is isomorphic to the category of pairs (T, u) where T
is a degree zero invertible sheaf with [T] = 0 in Pic} and pu: 7= — O¢ is an isomorphism. It
follows that ) — T is the base change of the map Uy 4, — (mg\/lg,l/Mg)[n] along the map

T — (@9\/{9,1//\45,)[”] given by (C, [O¢]); it is therefore a p,-gerbe (see Proposition 3.5). O

PROPOSITION 3.7. The stack Uy 4, is algebraic, flat and of finite type over M,. Moreover, the
map
Q

Z/{d,g,n Z/[dn,g,l
(C,Q,s) ——— (C,Q",s)
is flat, surjective and of finite type. If d > 0, then pgn g1 0 = pa,gn (see Definition 3.1 for the

notation) and, in particular, Q" (Z4n41) = Zagn- Ifp{n or g =0, then Q is smooth and Uy 4,
is smooth over M,.

Proof. The equality pgn,g,1 0 €2 = pg g follows from the fact that the base change of Hgy g1 —
Udn,g,1 along Q is Hggpn — Uy gn- Since the map € is the base change of Jacgy — Jacan g
(see Proposition 3.6) along the map Ugp g1 —> Jacdn,g, by Proposition 3.6 we can reduce the
problem to the case n = 1, where all the claims follow from Propositions 3.4 and 3.5. ]

The remaining part of the section is dedicated to the proof of Theorem 3.2. In particular in
what follows we assume d > 0.

Proof of Theorem 3.2(i). Set Hg g4, = Speco/. By definition Zg ., is the zero locus of a section
of (det «7)~2. We have an exact sequence on C

0—L"— O0c— Oy,,, —0.
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Applying 7, we get an exact sequence on Ug g p
mLT=0— Oy,,, — & —R'm (L") — R'm,0c — 0=R'" .0y,
where the first and last vanishing follow from Lemma 1.10. We also have
R, (L") ~ 1 (L @ wy)’  and  R'7,0¢ ~ (mewr),
again by Lemma 1.10. We can now deduce the following formula for the determinant of <7:
det o ~ (det m, (L" @ wy)) ! @ det mows
so that det .o/ ~2 is isomorphic to the invertible sheaf in the statement. ]
REMARK 3.8. If R is a local ring, R — S is a flat map of rings and M is an R-module, then
ls(M ®@p S) =1g(S/mrS)g(M)
where | denotes the length function.

The following theorem is one of the crucial points of this paper.

THEOREM 3.9. Assume n > 2. The discriminant locus of the universal degree n cover of
Hilb”Mg M, is flat, surjective and geometrically integral over M. In particular, it is integral.

Proof. The problem is local on My, therefore we may replace M, by a noetherian scheme Y and
M1 by a genus g curve C over Y. Set Z for the discriminant locus. By definition Z is the zero
locus of a section of an invertible sheaf over Hilbf: .. Moreover, this section is always nonzero over
a geometric point of Y because curves over an algebraically closed field always have n distinct
rational points. By Proposition 1.1 we can conclude that Z is flat over Y. For the remaining part
of the statement we may assume Y = Spec k, where k is an algebraically closed field.

Let C’ be a nonempty smooth open subset of a projective and integral curve over k (we will
reduce to a calculation on an open subset of a plane curve). Given indices i # j < n, we denote
by A; ;(C™) the effective Cartier divisor of C"" given by

Ai,j(Cln) = {(ph v 7pn) eCc™ | Pi = pj}

Let H(C™+1) € ¢ be the zero locus of 1 € Opms1 (Al i1 (C7Y) + -+ Ay (CH1)),
Notice that if C” C C’ is a nonempty open subset, then H(C""*1) —s "™ is the restriction of
the map H(C™*!) — C'™. Indeed, by definition we have

Vi Ai,n+1(cm+1) N (C//n % C/) — Ai,nJrl(C”n—i—l) — H(C/n+1) N (C/ln % Cl) — H(C/ln—i-l) .

We claim that H(C™T!) — C™ is a degree n cover. Indeed, by the discussion above, we can
assume that O’ is projective: in this case the map H(C™*!) — C™ is flat thanks to Proposi-
tion 1.1, proper, quasi-finite and generically étale of degree n. Set Z’ for the discriminant locus of
H(C™TL) in O™ and P € C'" for the generic point of Ay 2(C'™), which lies in Z’. We will show
that 1(Oz p) = 2. We first show how to conclude the proof from this fact. When C" = C the
cover H(C™*1) induces a map
f:C"— Hilbg/k
which factors through an isomorphism S™"C ~ Hilb, Ik In particular, f is a cover and Z' =

f~Y(Z). Moreover, topologically, Z equals f(A12(C™)) and coincides with the ramification locus
of f. In particular Z is nonempty and irreducible. Since Hilbg /i 1s smooth, to see that Z is
reduced we have to prove that (0 ¢p)) = 1. By Remark 3.8 and our assumption we have

2=U0zp) =10z p/msp)Oz POz ¢p)) = Oz sp))
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and we can exclude the equality because otherwise f would be unramified in P, and by the
transitivity of S, also over f(P), which is not the case.

We have to prove that 1(Oz p) = 2. Thanks to the discussion above we see that the ring
Oz p (and therefore the number 1(Oz p)) does not change if we take an open subset of C’. In
particular, projecting in ]P’i, we may assume that C is of the form

C'"=SpecA where A= kz,yl,/(f)
and f, g are polynomials. We have C'" = Spec B, where

B = A®n = k[l‘l, Y-+ -y Tn, yn]g(zl,yl)---g(wn,yn)/(f(xl7 y1)7 s 7f(xn7 yn))
and P = (z2 — 21, y2 — ¥1). By definition H(C'™*1) is the spectrum of the B-algebra

D:B[a,5]9(%5)/(]0(@,5),1‘[1]-) where I, = (a —z;,8 —y;).
J

We have to compute the discriminant locus of the cover Dp = D ® Bp over Bp and show that
it has length two. Since C’ is smooth, Bp is a discrete valuation ring (DVR). In particular, we
may assume that P is generated by x1 — z9 in Bp, so that 1 — x9 | y1 — y2 in Bp. Notice that

(a—xl)-u(a—:cl),(a—le)6]1'-‘Il+ll+1 - (3714_1—.%1)-”(1:“_1—331)611‘--114-[[4_1

in Bla, Blg(a,p)/(f(a, 8)). Looking at the quotient B/P = A®(=1) e see that the product
(x141 — x1) -+ (x141 — x7) is not an element of P for [ > 1. So I --- I} + I;11 is the trivial ideal
in Dp and applying the Chinese remainder theorem inductively it follows that

Dp = (Dp/]lfg) X Dp/Ig X oo X Dp/[n.

Since Dp/I; ~ Bp, the discriminant locus of Dp over Bp coincides with the discriminant locus
of E = (Dp/I,12) over Bp, which is a cover of degree two, since Dp is a cover of degree n of Bp.
From I1Is = 0 in E we get relations

a? = (r1 + 22)a —x129  and (11— 22)8 = (y1 — y2) + 21Y2 — Y122 .

Since x1 — xo divides y; — y2 in Bp, F is generated by 1, a as Bp-module. Moreover, since F is
a free Bp-module of rank two, 1, « is also a Bp-basis of E. Finally, a direct computation shows
that
tr(l) tr(a) 2
t = tr(a?) = 2_9 - _
r(a) =1 + 2, tr(a) = (z1 + 22) x1x2, det ( tr(a) tr(a?) (1 — x2)*,

where tr = trg/p,. The last determinant is the discriminant section of the cover E/Bp and
therefore its discriminant locus has length two, as claimed. O

Proof of Theorem 3.2, first sentence and (ii). By Proposition 3.7 we have Z;,, = <<=

Zing1 = 0 and, by Theorem 3.9, this happens if and only if dn = 1. So assume dn > 1.
Again by Proposition 3.7 we may assume n = 1. The result then follows from Proposition 3.4
and Theorem 3.9. O

We now deal with the problem of reducibility of the stacks Zg .

LEMMA 3.10. Let k be an algebraically closed field and let C be a genus g curve over k. If Q is
an invertible sheaf of degree d with d > 2g — 2 and q € C(k) then the map

HO(Q) — Q® (OC,q/mgoC,q) (3)
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where mq is the maximal ideal of Oc 4, has cokernel H(Q7' ® Oc(2¢) ® we); it is surjective if
d > 2g.

Proof. Consider the exact sequence
0— Q®0c(—2¢) — Q — Q® (O¢,g/miOc,q) — 0.
Since HY(Q) ~ H*(Q™! ® we) = 0 by degree reasons, applying H we get an exact sequence
HY(Q) — Q& (0cg/mgOc.g) — HY(Q® Oc(-29)) ~ H(Q™" ® Oc(29) @ we) — 0.
Finally, if d > 2g, then H*(Q™' ® O¢(2¢) ® we) = 0, again by degree reasons. O

Proof of Theorem 3.2(iii). The case n = 1 follows from Proposition 3.4 and Theorem 3.9. So we
focus on the case nd > 2g — 2. We remark that the proof is a bit simpler if we have the stronger
inequality nd > 2¢, and the intermediate cases require a finer inspection.

Set V =Vggn and U = Ug 4. By Remark 3.3 V is a vector bundle over Jacq, and U is the
complement of the zero section. Consider the diagram

VXjacd’gC*)C

! [

Yy —— Jacyy

where C is the universal curve over Jacy4. Denote by £ the universal invertible sheaf over C, so
that V corresponds to m,L". By [Gro67, Section 16.7| there exists a locally free sheaf F on C, the
2nd bundle of principal parts of £", and a map «a: 7*7, (L") — F such that for all algebraically
closed fields k and triples (C, Q,q) € C(k), where ¢ € C(k), we have F @ k ~ Q" ® Oc,q/m2,
where m, is the maximal ideal of O¢ 4 and

a®k: H(Q") ~ m*m. (LYY @k — FQk~Q"® Och/mg

is the restriction. If nd > 2g, by Lemma 3.10 we can conclude that « is surjective. In this case
in what follows set W = Jacqy and Y = (0. If nd < 2g, we want to find an open substack W of
Jacg 4 over which « is surjective. If dn = 2g and g > 3, consider the map

B: Myg1 — Jacdny, (C— S,0)+— (C,00(20) @ weys)
while if dn = 2g — 1 and g > 4, consider the map
B: Mg1 Xm, Mg1 — Jacing, (C— S,0,7) — (C,0c(20 —7) @ weys) -

In both cases denote by )’ the closed substack of Jacgn 4 whose topological space is the closure
of the image of 3, set ¥ = n~()’) where n: Jacqy — Jacg,y is the elevation to the n-th
power and W = Jacqy — V.

We will denote by —yy the restriction to W. We want to prove that ayy is surjective and we
can check this on the geometric points of Cyy. Given (C, Q, q) € Cyw(k), where k is an algebraically
closed field, by Lemma 3.10, the cokernel of a ® k is H?(7) where 7 = Q7" ® O¢(2q) ® we-
Notice that 7 has degree —dn + 2g. Assume by contradiction HY(T) # 0. If dn = 2g, then
T ~ O¢ and therefore n(C, Q) ~ B(C,q), which is not the case by construction of W. Finally,
if dn = 2¢g — 1, then by Lemma 1.11 there exists ¢’ € C such that T ~ O¢(q’), which means
n(C, Q) ~ B(C, q,q'), which is again not possible by construction.

We want to prove that (24 4.,,)y is irreducible. Since Jacq 4 and C are integral and the vector
bundle associated with 77 (L") is V X 74¢, ,C, the kernel Z of ayy is an integral closed substack of
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(V X Facq, C)w- Let Z be the image of Z via the projection (V X Jacg, C)w — V. We want to
prove that (Zq,4,)w = Znu topologically. This will imply the irreducibility of (Z44,n)w-

In what follows &k will be an arbitrary algebraically closed field. The objects of Z(k) are tuples
(C,9Q,4,8) € (V X7acy, C)w(k), where ¢ € C(k) and s € Q" such that vy(s) > 2, where v,
denotes the valuation in g. Thus the objects of (Z NU)(k) are triples (C, Q, s) € Uyy(k) for which
there exists ¢ € C'(k) such that vg(s) > 2. The result then follows from the following remark. If
(C,Q,s) € U(k), then the zero locus Z(s) C C of s is étale over k if and only if for all ¢ € C'(k) the
ring Oc,q/5q(=~= Ozs),4) is either 0 or k, that is, if and only if for all ¢ € C(k) we have v,(s) < 2.

If dn > 2g, so that W = Jacq, g, then (Z44n)w = 24,4 is irreducible as required. So assume
29 —2 < dn < 2g and g > 2. Denote by f: U — Jacygy the structure map. Topologically we
have

Zd,g,n c (Zd,g,n)W U fﬁl(y) )
where the closure is taken inside . If Z4 4, = U (which a posteriori will not be the case), there
is nothing to prove. Otherwise, since Z; 4, # (), by Corollary 1.7 the equality Zq gn = (Z4,9,n)W
follows from dim#/ — dim f~1())) > 2, which we are going to prove. Thanks to Proposition 3.6

the map U L Jacgg -7 ac4n,q has constant relative dimension. Moreover, n~1(Y') =Y and,
by Proposition 1.6, we get

dim — dim f~1(Y) = dim Jacgp 4 — dim )’ .
If dn = 2g, set M = M, 1, while if dn = 29 — 1, set M = M1 X, My 1. Let us also write
0: Jacgn,g — @dﬁg,l/Mg for the natural map, and v = § o 5. Since M and @dMng,l/Mg are
proper over M, and are Deligne-Mumford stacks, we can conclude that (M) is closed and, by
Corollary 1.8, that
dimy(M) < dim M.
Since §: Jacgn,yg — @jlctg,l//vlg is a Gy,-gerbe, we also have 6~ !(y(M)) = ), so that, by
Proposition 1.6,
dim J acgn,g — dim Y’ = dim Picqy |/, — dimy(M) > g + dim M, — dim M.

Since dim M = 1 + dim M, if dn = 2g and dim M = 2 + dim M if dn = 2g — 1, we get the
desired formula. O

When dn < 2g — 2 it is not clear whether Z;, ,, is irreducible or not. The main technical
issue here is that Vg, — Jacqq is no longer a vector bundle and Uy 4, — Jacyy may not
be surjective.

When dn > 2g — 2, we have shown above that the stack Z;, , is irreducible except in the
following cases: ¢ = 1 and (d,n) = (1,2); ¢ = 2 and (d,n) € {(1,4),(2,2),(1,3)}; g = 3 and
(d,n) = (1,5). In the remaining part of the section we work out the case g =1, d=1and n = 2
(so that dn = 2g). As claimed in Theorem 3.2(iv), we will see that Z ; 2 is reducible. In the other
cases just listed, it is again not clear whether Z; ,,, is irreducible or not.

LEMMA 3.11. Assume p # 2. Let C — S be a curve over an algebraic stack with a section T
and denote by W the zero locus of 1 € O¢(27) in C. Then p: W — S is a degree two cover.
Moreover, T factors through W and the induced map p,Oyy — Os istr,,0,, /2, where tr denotes
the trace map; its kernel is a square zero ideal.

Proof. The map p: W — S is a degree two cover thanks to Lemma 1.11 and the section S — C
factors through W by definition of this last space. Denote by ¥: p,Oyy — Og the induced map.
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Since Mg 1 is reduced, we may assume S = Speck, where k is an algebraically closed field. In
this case the result follows because p,Oy = k[x]/(x?). O

Proof of Theorem 5.2(iv). If we denote by € the universal curve over M 1, we are going to show
that there is a po-gerbe Z1 19 — 2[2]. Since this last group is a disjoint union of two irreducible
components and gerbes are geometrically irreducible, we will conclude that Z; 1 2 is also a disjoint
union of two irreducible components. We will then study the component over the zero section of
£[2] and represent it as zero locus of a section of an invertible sheaf.

Set £ = C for the universal curve of U; ;2. The canonical cover Hi12 — U2 of Ui 12
has degree two. By standard theory of double covers it is given by an invertible sheaf T over
Ui,12 and a section r € T2, so that Hi12 = Spec/ where & = Oy, ,, @ 7! By an easy
local computation, the discriminant section of the canonical cover coincides, up to an invertible
element, with r and therefore Z ; 2 is the zero locus of r. Set Z = 241 2. We will use the symbol
—z for base changes along Z — U 12. For instance, £z is the universal curve over Z with
universal invertible sheaf £z. Since rz = 0, we have ('7'2_1)2 = 0 in &z. Therefore the projection
Az — Oz is a ring homomorphism and thus induces a section Z — Hz and therefore a
section 7: Z — E£z. This yields a unique map O¢_ (1) — E% that sends 1 to s and therefore
a section s’ € N' = L% ® Og,(—7). Since s is nonzero on the geometric fibers of 7z: £z — Z,
by Lemma 1.11 there exist another section 7/: Z — £z and an isomorphism Og,(7') ~ N
sending 1 to s’. Since the cover (H1,1,2)z — Z is topologically a homeomorphism, the sections 7
and 7’ coincide on the geometric fibers of 7z. Since Z is reduced thanks to Theorem 3.2(ii), we
can conclude that 7 = 7/. Moreover, the induced isomorphism Og_ (27) — £% sends 1 to s.

Define Z’ as the stack of tuples (E,G,7,\) where E is a genus one curve over S, G is a
degree zero invertible sheaf over E, 7 is a section of E and A: G2 — Op is an isomorphism.
The discussion above shows that we have a map Z — Z’ which sends (E, Q,s) to (E,G, T, \),
where 7 is induced by the section 7: Z — €z, G = Q ® Op(—7) and the isomorphism A is the
base change of the isomorphism Og,(27) — EQZ. Conversely, we can define a map 2’ — Z
by sending (E,G,7,A) to (E,Q,s) where Q@ = G ® Og(7) and s is the image of 1 under the
isomorphism

Op(27) ~ G* ® Op(27) ~ Q*.
By Lemma 3.11 we see that the last functor is well defined and that the composition Z’ —
Z — Z’ is equivalent to the identity. Conversely, the composition Z — Z' — Z is equivalent
to the identity because the map Og_(27) — L% sends 1 to s.
We define the map

z! £[2]
(E,G,7,\) | (E,7,[G)).

where we identify £ with PicY see Lemma 2.11), which is easily seen to be a po-gerbe.

E/ M1 (

Now we prove that £[2] is a disjoint union of two irreducible components, one being the zero
section My 1 — E[2]. First of all, since £[2] is étale, the zero section is a connected component
of £[2]. So we need to prove that the complement H is irreducible as well. But H — My ; is an
étale degree three cover and thus, if H is not connected (and therefore irreducible, being smooth),
it should have a section, which is not the case thanks to Lemma 2.18 and Proposition 2.19.

Since p: Z' — £[2] is a po-gerbe and thus has irreducible fibers, we can conclude that Z' ~ Z
is a disjoint union of two irreducible substack, one of which is Zy = p~}(My1). We identify Z’
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with Z and will write Zj for the zero locus of a section of the invertible sheaf in the statement. So
with an object (E, Q, s) € Z are associated a section 7 of E, base change of 7: Z — £z and an
isomorphism Og(27) — Q2 sending 1 to s, base change of the isomorphism Og_ (27) — £%.
The objects of Zy are the triples (E, Q,s) € Z(S) such that Q and Og(7) differ by an invertible
sheaf from the base S, that is [Q] = [Og(7)] in &}E/S' Since £ is an invertible sheaf of degree
one on £, R = m,L is an invertible sheaf by Lemma 1.10 and there exists a unique section
o: Uy 12 — € with an isomorphism £ ~ Og(c) ® 7*R by Lemma 2.11.

Let W be the zero locus in &£ of the section 1 € Og(20). The induced map W — Uy 12 is
a degree two cover by Lemma 3.11. Tensoring the exact sequence defining Oyy by £2, we get an
exact sequence

0 —1T"R* 5L 1T"R2Q 0p(20) ~ L — O @ L2 — 0,
where a(z) = z ® 1. Applying 7, and taking into account Lemma 1.10 we get an exact sequence
0— R =% n.L? — 1. (0w ® L2) — Rl (n*R?) — 0

of locally free sheaves on U 1 2. Note that the exact sequence on & satisfies base change for m,. Set
N = Coker(m,). This is an invertible sheaf. Applying the determinant we see that it coincides
with the invertible sheaf in the statement. The section s € 7,.£2 induces a section t € N and we

claim that its zero locus is exactly Zy. This will conclude the proof. Let x = (E N S,Q,s) €
Ui1,2. We will denote by —, the base change along the corresponding map S — Uj 12. For
instance, £, = Q, f = m, and, with abuse of notation, s, = s. We have that ¢, = 0 if and only
if s, € Im(fry) C Q% if and only if s € Im(ay) € Q% So t, = 0 if and only if the square of
the isomorphism Q ~ f*R, ® Og(oy) sends s to a section of the form z ® 1. We want to show
that those are exactly the objects of Zy; that is, ¢, = 0 if and only if x € Zy.

If x € 2y, we have [Q] = [Og(0y)] = [Op(T)] in @}E/S, which implies o, = 7 by Lemma 2.11.
Moreover, we have an isomorphism Og(27) ~ Q2 sending 1 to s. We can conclude, observing
that all the isomorphisms Og(27) — Og(27) ® f*R? send 1 to a section of the form 1 ® x.

Assume now ¢, = 0, so that s € Q? corresponds to a section z ® 1 € f"‘R?< ® Op(20y).
If x € f*Ri does not generate this sheaf, then the zero locus of s € Q? inside E cannot be a
cover of S, because it will have nonzero dimensional fibers, contradicting the fact that x € Uy 1 2.
So f*R?< ~ Op, and the zero locus of s in F is the base change of W C &, the zero locus of
1 € Og(20). Taking into account Lemma 3.11, this shows that y € Z. It also implies 7 = o, so
that [Q ® Og(—7)] =0 in @%/S. This exactly means that y € 2, as required. O

4. Stacks of uniform cyclic covers and their Picard groups

In this section we work over a field of characteristic p > 0 and fix a nonnegative integer g and
a positive integer n with n > 2.

DEFINITION 4.1. Let Y be a scheme. A uniform cyclic cover of degreen of Y isamap f: X — Y
together with an action of i, on X such that for all ¢ € Y there exist an affine open neighborhood
U = Spec R of ¢, an element h € R and a p,-equivariant isomorphism of U-schemes f~1(U) ~
Spec R[z]/(x™ — h), where the right-hand side is given the action for which degx = 1.

Uniform cyclic covers of degree n form a stack that we denote by UC,,.

Notice that uniform cyclic covers of degree n are covers of degree n and can be seen as a
generalization of double covers when p # 2. The definition of uniform cyclic covers in [AV04]
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is slightly different from ours, because in Definition 4.1 we do not require that h be a nonzero
divisor. The reason is that this is automatic for uniform cyclic covers between schemes smooth
on a common base and that, avoiding this restriction, uniform cyclic covers are stable by base
change.

DEFINITION 4.2. Let h be a natural number. We denote by By g4, the stack of triples (D, C, f)
where D — S is a genus h curve, C — S is a genus g curve and f: D — C is a uniform
cyclic cover of degree n.

We define the number d(h, g,n) = 2%, sothat h=1+n(g—1)+ @d(h,g,n).

The aim of this section is to describe By 4, and compute its Picard group, at least for h > g.
We start by describing explicitly uniform cyclic covers.

REMARK 4.3. Let ), be the stack parametrizing pairs (£, s) where £ is an invertible sheaf and
s € L. There is an equivalence ),, — UC,, that maps (L, s) € YV, (S) to

X =Spec/ — S  where # =0gdL '@ -aL "D,

where p,, acts on & via the given grading and the equivariant algebra structure on &/ is obtained
as follows: given 0 < u, v,z < n such that z = u + n mod (n), the multiplication is
YN fut+v<n

id®s

(LT"QLTY — LT7) ~
LTV ~LAQQLTT S L% futv>=n

A quasi-inverse A: UC,, — Y, is obtained as follows. Given a uniform cyclic cover f: X — §
of degree n, the group u, acts on f,Ox. The degree one part of f,Ox is an invertible sheaf on §
and we set £ for its dual. Since the multiplication f,Ox ® f.Ox — f.Ox is pp-equivariant, we
get a map from £~ to the degree zero part of f,Ox, which is Og. This yields a section s € L".

PROPOSITION 4.4. Let h be a natural number and set d = d(h,g,n). If d ¢ N, then By, g, = 0.
If d € N, the functor (see Remark 4.3 for the notation)

wh,g,n

ud,g,n

(C,Ac())

Bh,g,n
(D,C, f)

is well defined and an open immersion. If h > n(g—1)+1, the image of ¥y, 4 , is the complement of
Z4,9n InUg g, which is the étale locus of the canonical cover Hagn — Uy gn- Ifh =n(g—1)+1
and g > 1, the image of 1y, 4, Is the substack of Uy, of triples (C — S, Q,s) such that
Q,...,9" ! are not trivial on the geometric fibers of C — S.

Proof. Let (D,C, f) € Bp gn(k), where k is an algebraically closed field, and set (Q, s) = Ac(f),
so that

fOp~0c®Q ' -0 Q "
Since D is integral and connected, we get dimy H*(Q™") =0 for i = 1,...,n — 1. By Riemann-
Roch it follows that dimy, H(Q~%) =ideg Q + g — 1 and therefore

dimy H'(f,Op) = h = n(g — 1) + 1 4 (deg Q)n(n — 1)/2

In particular, deg @ = d € Z. On the other hand, s cannot be zero since D is smooth and therefore
deg @ > 0. In conclusion, we see that By, 4, = 0 if d ¢ N, and that 1y, ¢ ,, is well defined if d € N.

From now on we assume d € N. From Remark 4.3 it follows that vy, 4 ,, is fully faithful.
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Given (C — S5,Q,s) € Uqgn, we have to check under what conditions the total space of
the uniform cyclic cover D — C' associated with (Q,s) (see Remark 4.3) is a smooth curve of
genus h over S. It is easy to see that everything follows from the case S = Speck, where k is an
algebraically closed field. Assume d > 0. We have H’(Q~%) = 0 for i > 0, which tells us that D
is connected and, by definition of d, that dimy H!(Op) = h. The result then follows because the
scheme D is regular if and only if the zero locus of s € Q" is étale over k. This can be checked
locally using that if (R,mpg) is a DVR and h € R, then R[x]/(z™ — h) is regular if and only if
h & m%,.

Now assume d = 0. By Proposition 3.5 the map s: Oc — Q™ is an isomorphism. In partic-
ular, D — C'is a up-torsor and therefore D is smooth. Moreover, D is connected if and only if
H°(Q7") =0fori=1,...,n—1, in which case it has exactly genus h by definition of d. Since Q
has degree zero, we have H’(Q™%) # 0 if and only if Q* ~ O, which concludes the proof. O

PROPOSITION 4.5. Let h be a natural number with d = d(h, g,n) € N. Then By, 4, is a nonempty
algebraic stack of finite type and if nd > 29 —2 or p{ n, By gn — M is smooth and surjective.

Proof. Let k be an algebraically closed field. We are going to prove that By g, # (0 and, if
dn > 2g—2or p{n,that By, 4, — My, is surjective. All the other claims follow from Remark 3.3
and Propositions 3.7 and 4.4

Assume d > 0. By Proposition 4.4 we have By g, = Ujgn — Zd,9n- Moreover, by Propo-
sition 3.7 there is a surjective map Uy gn — Z4,9n — Und,g1 — Znd,g,1- We can conclude that
B gn — My is surjective because if C' is a genus g curve over k and p1,...,p,q are distinct
rational points, then (C, Oc(p1 + -+ + Pna); 1) € Unag1 — Znd,g1)(k).

Assume d = 0 and let C' be a genus g curve over k. We have g > 1 because if g = 0, then
h =1—n < 0. By Proposition 4.4 the fiber of By 4 , — M over C € My(k) is not empty if and
only if Pic C' has an element of order n. If p { n, this is always the case thanks to Remark 1.12.
If p | n we have to show that this holds when C' is general. We may assume n = ¢ for some
prime q. If ¢ # p, then PicC has an element of order n by Remark 1.12. Assume p = ¢. By
[FvdGO04, Theorem 2.3] when C'is general there exists an invertible sheaf 7 on C of order p. Since
[plfl]: @% — @OC is surjective by Remark 1.12, there exists @ € Pic C such that sz—1 ~T.
It is easy to check that Q has order exactly p! = n. O

The following result explains the relation between Pic By g4, and Pic Jacg, g.n),g-

PROPOSITION 4.6. Let h be a natural number such that d = d(h,g,n) € Z and nd > 2g — 2.
Let m: C — Jacqy be the universal curve and let L be the universal invertible sheaf on C. Set
also T = (det m.(L" ®wy))? @ (det mywy) 2. Then the map By, g — Jaca,, induces a surjective
morphism

v: (PicJacaq)/(T) — PicBhgn

If Z4 4 is integral, then v is an isomorphism. If h =n =2, g = 1 (so that d = 1) and p # 2,

then the kernel of vy is generated by (m+£)? ® (Tawx) 2.

If g = 0, with notations from Proposition 2.6, then T =~ Egn(nd_l) if d is even, T ~ L
ifdisodd. If g =1 and p { d, then T ~ (det 77*5)2”2 @ (Tatwr )™ +d=20) Tf g > 2 and p = 0,
then T ~ (det muwy) 2" @ dp (L)1) @ (det 7, (L @ wy)) ().

(nd—1)

Proof. Notice that we must have d > 1, otherwise ¢g =0, d =0 and h =1 —n < —1. The stack
Jacg 4 is smooth and irreducible by Remark 2.2. Moreover, V4 4, — Jacyq4 is a vector bundle
of rank nd + 1 — g and Uy 4, is the complement of the zero section in Vy,, by Remark 3.3.
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Notice that tkVg 4, = nd +1 — g > 2 using that nd > max{2,2¢g — 1}. Thus Uy 4, is smooth
and integral and, by Proposition 1.9, we can conclude that the map Uy 4, — Jacg 4 induces an
isomorphism on Picard groups. By Propositions 4.4 and 4.5 we have B, g, = Ui gn — Zdgn 7# 0,
while by Proposition 1.9 and Theorem 3.2 the map v is well defined, surjective and, if 2y, is
integral, an isomorphism. The claim about the case h =n =2, g = 1 and p # 2 follows again by
Proposition 1.9 and Theorem 3.2.

The expressions for T in the last part of the statement follow by a direct computation from
Proposition 2.6 and Theorems 2.9 and 2.5, respectively. ]

Proof of Theorem A, except the case of By1,2. The first part of the statement follows from Prop-
ositions 4.4 and 4.5.

By construction £ is the universal invertible sheaf on C with respect to the map By, 4, —
Jacg 4. We first consider the case g = 1 and h = n = 2. By Theorem 2.9 and Proposition 4.6
the group PicBa 12 is generated by v = 7L and 8 = m.w, with relations 8a = 24, 2a = 243
and 128 = 0. Those relations are equivalent to 63 = 0 and 2a = 23, which yields PicBa 12 ~
Z)6Z x 7] 2.

In all the other cases we have nd > 2g — 2 and that Z;,, is integral by Theorem 3.2. In
particular, the map v defined in Proposition 4.6 is an isomorphism. Using Proposition 4.6 the
description of Pic By, 4, with generators and relations follows from Proposition 2.6 for g = 0,
Theorem 2.9 for g = 1 and from Theorem 2.5 for g > 2.

We now deal with the description as abstract groups. For g = 0 the result is clear.

Consider now the case (ii), that is, g = 1 and nd > 2. Set A = n(dn + d — 2n) and notice
that 2 | A. The group H = Pic By is isomorphic to Z*/((0,12), (2n?, A)). The element (0,4)
has order three in H. A direct check shows that the map ¢: H — Z/37Z given by ¢(0,1) = 1
and ¢(1,0) = z, where x = 0 if 3 | n and z = A/n? otherwise, is well defined because 3 | n
implies 3 | A. Since ¢(0,4) = 1 we obtain H ~ Z/37Z x G, where G = H/{(0,4)). We have
G = 72/{((0,4), (2n% A)). If 4 | A, then G ~ Z/4Z x Z/2n*Z. So assume A = 2 mod (4). The
map ¢: G — Z/27Z given by 1(u,v) = v is well defined. Moreover, (n?,1) has order two in G
and ¥(n? 1) = 1. We obtain G = Z/27Z x Z*/{(0,4), (n?,1)). It is now easy to check that the last
factor is cyclic of order 4n?.

Consider now the case (iii) and set z = (1,0,0) € Z3. Then PicBj, 4, is isomorphic to the
group H quotient of Z3 by the relations (—2n?,n(n + 1),n(n — 1)) and, if g = 2, 10z. Set [ = 10
if g =2 and [ = 0 otherwise. It is easy to see that (x) ~ Z/IZ. A direct computation shows that
the map v: H — Z/IZ given by ¥ (u,v,z) = u+ v + z is well defined. Since ¥(x) = 1, we can
conclude that H ~ Z/IZ x G, where G = H/x ~ Z?/{(n(n + 1),n(n — 1))). Set m for the great
common divisor of n(n + 1) and n(n — 1). An easy computation shows that m = n if n is even
and m = 2n is n is odd. Let a, 8 € Z such that an(n + 1) + fn(n — 1) = m. Consider the map

o B
¢ = ( _n(n=1)  n(n+l) ) 2P — 72

m m

By construction ¢ is an isomorphism because det ¢ = 1. Moreover, ¢p(n(n+1),n(n—1)) = (m,0)
and therefore G ~ Z?/((m,0)) ~ Z/mZ x 7 as required. O

In the remaining part of this section we will deal with the case of Bj12. As pointed out
at the beginning, this case is peculiar and needs a variation of the methods used for higher
genera. Nevertheless, the steps in the computation of Pic By 12 are very similar to the ones in the
computation of Pic By, 1, for h > 0.
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In what follows we consider g = 1 and assume p t 6. We denote by MLQ the universal curve
over M 1, which is the moduli stack of triples (E, 01, 02) where E is a genus one curve and oy,

o9 are sections. The map MV 1,2 — M 1 is the functor that forgets the second section.
PROPOSITION 4.7. The functor

,//\/lVLQ jaCO,l
(E,o01,02) +— (E,0g(02 — 01))

is an epimorphism in the fppf topology and is a section of the functor

jaCO,l le,z
(E7 Q) L (@%‘/Sv [OE]v [Q])

Proof. The second part of the statement follows from Lemma 2.11. For the first one let (E, Q) €
Jacp1. We may assume that E has a section 0. Again by Lemma 2.11, [Q] = [Og (02 — 01)], for
some section o9 of E, which means that Q@ and Og(oy — 01) are fppf locally isomorphic. O

DEFINITION 4.8. We define the group functor Gy over //\/lvl,g as the group G obtained as in
Lemma 2.14 with respect to the maps defined in Proposition 4.7.

PROPOSITION 4.9. An element of Go(S {B02), MV172) is a pair (f,\) where f: (E,01) —

(E,01) is a translation and \: Og(o2 —01) — Og(f(0o2) — f(01)) is an isomorphism. Moreover,
we have an exact sequence

(£, A) = flon)

0 Gm Go & 0
oo (id, )

in the Zariski topology of Sch///\/lvl,g, where £ — ./K/lvl’g is the universal curve. In particular, G

is smooth over M ».

Proof. By definition, an element of Gy(S Bovo2), //\\4/172) is a pair (f,\) where f: E — E is

an isomorphism such that f,: @% /s — @% /s is the identity and

A OE(O'Q — 0'1) — OE(f(UQ) - f(gl))

is an isomorphism. As in the proof of Proposition 2.16, f, = id means that f is a translation. In
particular the sequence in the statement is well defined and, since m.G,, g ~ Gy, it is exact in
the first two terms.

It remains to prove that Gy — &£ is a Zariski epimorphism. This will also imply that Gg
is locally a product of G,, and £ and therefore smooth. Let (F,01,092,0) € £ and let ¢t be the
translation by §, so that ¢(o1) = 0. Since ¢ is a translation, we have

[Op(0s — 01)] = [Op(t(02) — t(01))] in Pic, g,

which means that the sheaves differ from an invertible sheaf coming from the base thanks to
Lemma 1.10. So Zariski locally we get an isomorphism A: Og(o2 — 01) — Og(t(o2) — t(o1))
and therefore (t,\) € Go(E, 01.02)) is mapped to (E, 01, 02,0). O
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LEMMA 4.10. Let X be a smooth algebraic stack, let Y L4 X be a Gy,-torsor and let £ be the
invertible sheaf over X corresponding to it. Then we have an exact sequence

7 55 Pic X 25 Picy —s 0.

Proof. The stack ) and the line bundle ) — X corresponding to £ can be seen as the relative
sheaves

Isoy(Ox, L) and Hom (O, L)

on Sch/X, respectively. Denote by ¢: ) — X the structural morphism. The stack ) is the open
substack of )’ whose complement Z is the zero section of ) — X. The stack Z is integral
since X is so and it is the zero locus of the universal section of ¢* L. The result then follows from
Proposition 1.9. L]

In what follows we denote by F the complement of the zero section My — M 1,21n M 1,2[2].

PROPOSITION 4.11. The composition By 12 — Jacy1 — ﬂlﬂ has image in F. The induced
map By1,2 — F yields an isomorphism on Picard groups and factors as a Gy,-torsor By 12 —
Br Gq followed by the projection B Gy — F.

Proof. Set X = Br Gy. By Lemma 2.14 and Proposition 4.7, we see that Jaco1 ~ BMLQ Go.
In particular, X can be viewed as the closed substack of Jacg; of pairs (E, Q) such that
(Pic%, [Og],[Q]) € F. By Proposition 4.4 we see that the forgetful map Bii12 — X is a
Gp-torsor corresponding to the invertible sheaf 7, (£?), where m: & — X is the universal curve
and L is the universal invertible sheaf over it. Notice that X is smooth because it is an open
substack of Jacp, 1, which is smooth thanks to Remark 2.2. In particular, from Lemma 4.10 the
pull-back of B 12 — & induces an isomorphism

Pic By 12 =~ Pic X /(m.(L?)) .

Moreover, from Remark 1.2, we have Pic X = PicF & Gj. We are going to show that Gy ~ Z
and that the component of m,(£?) in Pic X with respect to G generates this last group. This
will imply that the composition of pull-backs Pic /¥ — Pic X — Pic By 12 is an isomorphism.

Taking into account Proposition 4.9, the inclusion G,, — Gy gives amap a: Gy — Gy, ~7Z
whose kernel is the group of characters of the universal curve Eof F. If o: E — Gy, is such a
homomorphism, ¢~1(1) is a closed substack of & ; by checking on the geometric fibers, we see that
they are topologically equal. Since £ is reduced, we can conclude that ¢ is trivial and therefore
that « is injective. As in the proof of Proposition 2.20, considering the functor

Br Gy, X
(E i> 57017027 Q) L (anE(JQ _01) ®7T*Q)

and the expression

W*[(OE(UQ — 01) & W*Q)Q] ~ 7&(0}5(202 — 201)) (= Q2 ,
we see that m.(£?) is sent to 2 by the map

Pic X ~ Pic F & GY “2% Pic F & GY, — GY, = 7.

In particular, 2Z C Ima and we need to prove that those groups are equal, or, equivalently,
that « is not an isomorphism. Assume by contradiction that « is an isomorphism. This exactly
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means that the map G,, — G has a section. Thus also the map Gg —> € has a section. Since
this last map is a Gy,-torsor, we can rephrase this by saying that the invertible sheaf over £
corresponding to Gy is trivial. We are going to compute this sheaf and prove that it is not trivial.
Given (E -+ S,01,02,03) € £ and denoting by t: (E,01) — (FE,01) the translation by o3,
so that t(o1) = o3, the invertible sheaf K over g corresponding to Gy is given by the following
calculation:

Isop(Op(oy — 01), Op(t(02) — t(01)) = Isop(Op(02 + 03 — 1), Op(t(02)))

g @S(W*OE(UQ + o3 — 0'1), OS) o~ W*OE(O'Q + o3 — 0’1)\/ ,
where we have used that m,Og(t(02)) ~ Og by Lemma 1.11. Using Proposition 2.12 twice we
also have

m.Op(o2 + 03 — 01)\/ ~ 010g(02) ® 01 0g(03) @ 050p(—02) ® Taws .

Given an elliptic curve E over an algebraically closed field with origin p; and ps € E[2] — {p1},
we consider the object x = (E x E =2 E,01,02,A) € E(E) where 0; = p; x idg: E — Ex E
fori =1,2 and A: E — FE x FE is the diagonal. Using the isomorphism above, the pull-back
of K to F is given by

010exE(02) ® 01OpxE(A) @ A*Opyxp(—02) ® pro, wpr, ~ Op(p1 — p2),

which is not trivial. O

PROPOSITION 4.12. We have PicF ~ Z/4Z, generated by the invertible sheaf m.w,, where
w: & — F is the universal curve over F.

Proof. Let k be the base field and set U = Spec R, where R = k[a, b|a with A = 4a® + 27b? and
p: F — My for the structure map, which is an étale degree three cover. Since char k t 6, the
map U — M1 given by the general Weierstrass curve

W = Proj(R[xz,y,2]/(f)) — U where f = 3?2z — 2® — azz® — b23

is a G,,-torsor corresponding to a generator K of Pic M 1, either p,w), or its dual, where p: £ —s
M1 is the universal curve. In particular, the base change V' = U xq, ; F — F is the Gy,-
torsor corresponding to the pull-back p*IC; it coincides with TW[2] minus the zero section. By
[Sil86, Group law algorithm 2.3|, 2-torsion points are obtained by modding out by y; therefore
we get
V ~ Speckla, b, z]a/(z® + ax + b) .

In particular, V' is an open subscheme of A2 = Speck|a,x] and therefore PicV = 0. We can
conclude by Lemma 4.10 that Pic F is generated by w = m,w,. This is because if w’ = p,wy, then
P ~w.

We want to prove that the order r of w in PicF is exactly four. Since w’ has order 12 in
Pic M1,1 by Theorem 2.10, we have

Wt~ O = p.OF ~ " ® p.OF A B Omy, = 12[3r = 4|r.
Consider now the invertible sheaf 7 on F given by
T:(E-L S, 01,00) — 0505(02 — 01) ® 02O (01 — 032) .

Since Op(oy — 01)? =~ ¢*q.(Op(oy — 01)?) by definition of F and Lemma 1.10, we see that
T2 ~ Or. On the other hand, since o1 and o9 are disjoint, we have o;Og(02) ~ 0350g(01) ~ Op
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and therefore 7 ~ w? thanks to Proposition 2.12. In conclusion O ~ T2 ~ w* and therefore
r=4. [

Proof of Theorem A, the case of B11,2. By Proposition 4.4 L is a degree zero invertible sheaf on
C which is never trivial on the geometric fibers of C — By 1 2. By Grauert we can conclude that
7w L = 0, so that det m, L is trivial. The result then follows from Propositions 4.11 and 4.12. [
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